发布于:2019-06-12 10:48:59   |   作者:[学院] 数学学院   |   浏览次数:3689

报告题目:Decay estimates of solutions to the incompressible Oldroyd-B model in R^3

  人:温焕尧 教授(华南理工大学)



  人:向昭银 教授



We consider the Cauchy problem for  the incompressible Oldroyd-B model in R^3. For the case a=0, global existence results for weak solutions were derived by Lions and Masmoudi, allowing the initial data to be arbitrarily large, whereas it  is not known whether this assertion is true also for a which is not zero. We obtain time decay estimates for weak solutions subject  to arbitrary large data are given for  the case a=0. Furthermore, time-decay estimates are also given for strong solutions for  a which is not zero, however, for small initial data. The decay estimates obtained  are of the form that the k^{th} order derivatives in L^2 decay as (1+t)^{-\fr{3}{4}-\frac{k}{2}} for k=0,1,2 as t goes to infinity.Note that the coupling constant w does  not need to be small. This talk is based on the joint work with Matthias Hieber, and Ruizhao Zi.


温焕尧,男,华南理工大学数学学院教授、博士生导师、副院长。主要从事流体力学中的偏微分方程的数学理论研究。研究成果发表在Adv. Math.Arch. Rational Mech. Anal.J. Differential EquationsJ. Functional AnalysisJ.  Math. Pures Appl. Math. Models Meth. Appl. Sci.SIAM J. Math. Anal.等杂志。先后主持中国博士后科学基金面上项目、特别资助项目,国家自然科学基金青年项目、面上项目和优秀青年科学基金项目。2016年获广东省青年珠江学者。